

United States Patent 1191

Forrest et al.

Patent Number: [11]

5,757,139

Date of Patent: [45]

May 26, 1998

[54] DRIVING CIRCUIT FOR STACKED ORGANIC LIGHT EMITTING DEVICES

[75] Inventors: Stephen R. Forrest; Paul Burrows.

both of Princeton, N.J.

Assignee: The Trustees of Princeton University [73]

Appl. No.: 792,050

Feb. 3, 1997 [22] Filed:

[51] Int. Cl.⁶ G09G 3/14

[52] U.S. Cl. 315/169.3; 313/504

[58] 315/168, 169.2, 169.1, 161, 163, 162; 313/498, 501, 506, 503, 504

References Cited [56]

U.S. PATENT DOCUMENTS

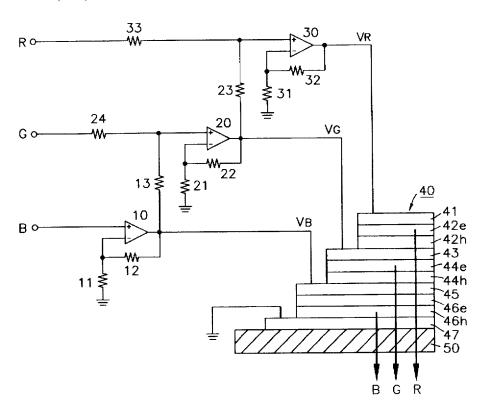
4,356,429	10/1982	Tang.
4,670,689	6/1987	Suzuki .
4,908,603	3/1990	Yamaue et al
5,122,711	6/1992	Wakimoto et al
5,216,331	6/1993	Hosokawa et al 315/169.3
5,291,098	3/1994	Okita et al
5,427,858	6/1995	Nakamura et al
5,505,985	4/1996	Nakamura et al
5,529,853	6/1996	Hamada et al

OTHER PUBLICATIONS

Garbuzov et al., "Photoluminescence efficiency and absorption of aluminum-tris-quinolate (Alq3) thin films", Chemical Physics Letters 249 (1996) 433-437.

Baigent et al., "Conjugated polymer light-emitting diodes on silicon substrates", Appl. Phys. Lett. 65 (21), 21 Nov. 1994, 2636-2638.

Burrows et al., "Reliability and degradation of organic light emitting devices", Appl. Phys. Lett. 65 (23), 5 Dec. 1994. 2922-2924.


Garbuzov et al., "Organic films deposited on Si p-n junctions: Accurate measurements of fluorescence internal efficiency, and application to luminescent antireflection coatings", Journal of Applied Physics, vol. 80, No. 8, 15 Oct. 1996, 4644-4648.

Primary Examiner-Robert Pascal Assistant Examiner-David H. Vu Attorney, Agent, or Firm-Kenyon & Kenyon

ABSTRACT [57]

Arrangements for biasing the individual light emitting elements of a stacked organic light emitting device (SOLED). A circuit is provided for independently driving the individual OLEDs in a conventional SOLED having one electrode coupled to ground potential and one further electrode for each of the OLEDs in the stack. Additionally, new SOLED structures are described in which each OLED in the stack is provided with a ground reference. A SOLED combining upright and inverted OLEDs is also described.

19 Claims, 4 Drawing Sheets

